

# **Deloro Stellite**

HARDFACING CONSUMABLES



### **Deloro Stellite GmbH**

Deloro Stellite GmbH is a leading manufacturer of wear resistant products and supplier of solutions for wear problems.

Excellent product properties guarantee reliable resistance to combinations of corrosion, high temperatures and mechanical wear mechanisms. In close co-operation with you, we strive for the optimum solution to your wear problems.



# Hardfacing by Welding

- 1 TIG Welding, Oxy-acetylene Welding
- **?** Manual Metal Arc Welding
- Gas Metal Arc Welding (MIG/MAG),
  Submerged Arc Welding
- 4 Plasma Transferred Arc Welding (PTA Welding)
- **S** Laser Welding
- **Flame Spraying with subsequent Fusing**
- Powder Welding
- Plasma Spraying
- **9** High Velocity Flame Spraying (HVOF)

# Thermal Spraying

### **Our Alloys**

#### Stellite® Alloys

The cobalt-based Stellite® alloys are our most well-known and successful alloys, with the best 'all-round' properties. They combine excellent mechanical wear-resistance, especially at high temperatures, with very good corrosion resistance.

#### **Deloro® Alloys**

Deloro® alloys are nickel-based alloys with a hardness of up to 62 HRC, which makes them ideal for mechanical wear-resistance. Their wear-resistance at higher temperatures is less than that of Stellite® alloys; their corrosion-resistance in Sodium Hydroxide and similar media is excellent.

#### Tribaloy® Alloys

Tribaloy® alloys, with either a nickel or cobalt base, were developed for applications in which extreme wear is combined with high temperatures and corrosive media. Their high Molybdenum content accounts for the excellent dry-running properties of Tribaloy® alloys and makes them very suitable for use in adhesive (metal-to-metal) wear situations.

#### Nistelle® Alloys

Nistelle® alloys are nickel-based alloys that were developed for protection against aggressive chemicals and other corrosive media. The high Chromium and Molybdenum contents guarantee excellent properties.



#### Stelcar® Alloys

Stelcar® alloys are mixtures of carbide particles and self-fluxing nickel- or cobalt-based powders. Due to their construction, Stelcar® materials are available only in powder form, for application by thermal spraying or hardfacing by welding.

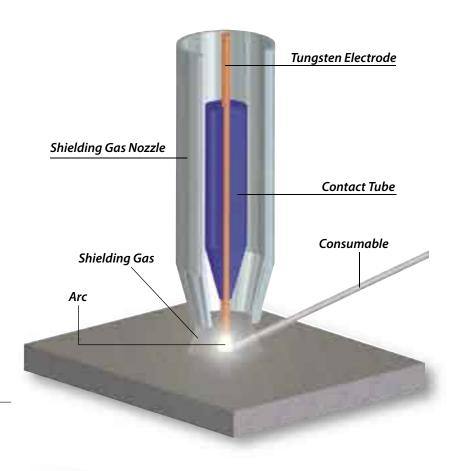
#### **Delcrome® Alloys**

These iron-based alloys were developed to resist abrasive wear at lower temperatures, typically up to 200°C. When compared with our cobalt- and nickel-based alloys, their corrosion-resistance is also comparatively low.

#### **Jet Kote® Powder**

Jet Kote® powders are used for thermal spraying and they consist usually of either a carbide-metal combination (e.g. WC-Co or Cr<sub>3</sub>C<sub>2</sub>-NiCr) or a Stellite® alloy.

| Selection<br>Table      | Alloy     | Mechanical<br>Wear | Corrosion | High Operating<br>Temperature |
|-------------------------|-----------|--------------------|-----------|-------------------------------|
| labic                   | Stellite® | +++                | +++       | ++++                          |
|                         | Deloro®   | +++                | ++        | ++                            |
| +                       | Tribaloy® | +++                | +++       | ++++                          |
| low resistance          | Nistelle® | +                  | ++++      | +++                           |
| satisfactory resistance | Delcrome® | +++                | +         | ++                            |
| very good resistance    | Stelcar®  | ++++               | ++        | ++                            |
| excellent resistance    | Jet Kote® | ++++               | +         | ++                            |


### TIG Welding/Oxyacetylene Welding



### TIG Welding/ Oxy-acetylene Welding

In TIG (Tungsten Inert Gas) welding, an arc is drawn between a non-consumable tungsten electrode and the workpiece. The electrode, the arc and the weld-pool are protected from the atmosphere with an inert shielding gas. For manual welding the hardfacing material is in the form of a rod. Advantages of the TIG process include simple manual operation and good control of the welding arc. The process can also be mechanised, in which case a manipulator is used to move the workpiece in relation to the welding torch and the hardfacing rod or wire.

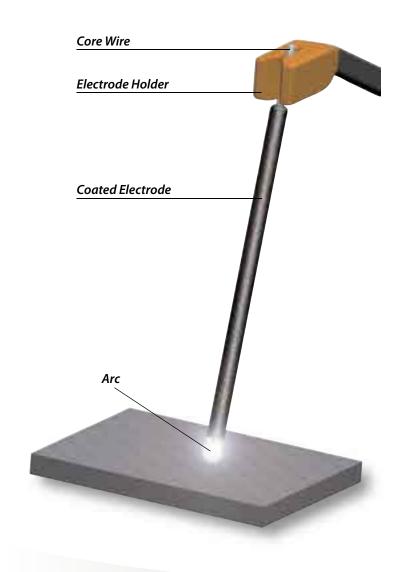
Rods are also used for hardfacing with the oxyacetylene welding process. With the correct operation, a very low level of iron dilution can be achieved in the overlay.



| Alloy                   |       |         |      |      | Nomin | al Analy | rses |      |      |            | Hardness |
|-------------------------|-------|---------|------|------|-------|----------|------|------|------|------------|----------|
|                         | Cr    | С       | Мо   | Si   | W     | Ni       | Со   | Fe   | В    | Other      | HRC      |
| Cobalt Base             |       |         |      |      |       |          |      |      |      |            |          |
| Stellite® alloy 1       | 30.0  | 2.5     | -    | -    | 12.0  | -        | Bal. | -    | -    | -          | 51-58    |
| Stellite® alloy 6       | 28.0  | 1.1     | -    | -    | 4.0   | -        | Bal. | -    | -    | -          | 39-43    |
| Stellite® alloy 12      | 29-31 | 1.4-1.8 | -    | -    | 8.0   | -        | Bal. | -    | -    | -          | 47-51    |
| Stellite® alloy 20      | 33.0  | 2.45    | -    | 1.0  | 17.5  | -        | Bal. | <2.5 | -    | -          | 53-56    |
| Stellite® alloy 21      | 27.0  | 0.25    | 6.0  | -    | -     | 2.0      | Bal. | -    | -    | -          | 28-40*   |
| Stellite® alloy 22      | 28.0  | 0.3     | 12.0 | -    | -     | 1.5      | Bal. | -    | -    | -          | 41-49    |
| Stellite® alloy 25      | 20.0  | 0.1     | -    | -    | 15.0  | 10.0     | Bal. | <3.0 | -    | -          | 20-45*   |
| Stellite® alloy 190     | 26.0  | 3.25    | 1.0  | 0.85 | 14.5  | 3.0      | Bal. | 3.0  | -    | -          | 50-53    |
| Stellite® alloy 250     | 28.0  | 0.1     | -    | -    | -     | -        | Bal. | 20.0 | -    | -          | 19-29    |
| Stellite® alloy 694     | 28.0  | 1.0     | -    | 1.0  | 19.0  | -        | Bal. | <2.5 | -    | -          | 48-51    |
| Stellite® alloy 712     | 29.0  | 1.85    | 9.0  | 0.5  | -     | <3.0     | Bal. | <3.0 | -    | -          | 46-51    |
| Stellite® alloy F       | 25.0  | 1.7     | -    | -    | 12.0  | 22.0     | Bal. | -    | -    | -          | 40-45    |
| Ultimet®                | 26.0  | 0.06    | 5.0  | -    | 2.0   | 9.0      | Bal. | 3.0  | -    | -          | 28-45*   |
| Tribaloy® alloy T-400   | 8.5   | <0.08   | 28.5 | 2.6  | -     | -        | Bal. | -    | -    | Ni+Fe <3.0 | 46-53    |
| Tribaloy® alloy T-400 C | 14.0  | <0.08   | 27.0 | 2.4  | -     | -        | Bal. | -    | -    | -          | 47-52    |
| Tribaloy® alloy T-401   | 17.0  | 0.2     | 22.0 | 1.3  | -     | -        | Bal. | -    | -    | -          | 45-50    |
| Tribaloy® alloy T-800   | 18.0  | <0.08   | 28.0 | 3.4  | -     | -        | Bal. | -    | -    | -          | 53-60    |
| Nickel Base             |       |         |      |      |       |          |      |      |      |            |          |
| Deloro® alloy 22 (VC)   | 1.2   | -       | -    | 2.5  | -     | Bal.     | -    | -    | 1.3  | -          | 19-24    |
| Deloro® alloy 40        | 11.0  | 0.45    | -    | 2.5  | -     | Bal.     | -    | 2.25 | <2.5 | -          | 35-42    |
| Deloro® alloy 40 G (VC) | 7.5   | 0.3     | -    | 4.0  | -     | Bal.     | -    | 5.0  | 1.1  | -          | 30-35    |
| Deloro® alloy 50        | 12.0  | 0.35    | -    | 3.5  | -     | Bal.     | -    | 5.0  | 2.5  | -          | 49-52    |
| Deloro® alloy 60        | 15.0  | 0.75    | -    | 4.0  | -     | Bal.     | -    | 4.0  | 3.5  | -          | 57-62    |
| Nistelle® alloy C       | 17.0  | 0.1     | 17.0 | -    | 5.0   | Bal.     | -    | 6.0  | -    | -          | 17-27*   |
| Tribaloy® alloy T-700   | 15.5  | <0.08   | 32.5 | 3.4  | -     | Bal.     | -    | -    | -    | Co+Fe <3.0 | 42-48    |

<sup>\*</sup>depending upon the degree of cold-working

Rods are available in these standard diameters: **3.2mm | 4.0mm | 5.0mm | 6.4mm** Rods with diameters of **0.8mm** or **2.5mm** are available on request.


### Manual Metal Arc Welding



### **Manual Metal Arc Welding**

In this process an arc is drawn between a coated consumable electrode and the workpiece. The metallic core-wire is melted by the arc and is transferred to the weld-pool as molten drops. The electrode coating also melts to form a gas shield around the arc and the weld pool as well as a slag on the surface of the weld-pool, thus protecting the cooling weld-pool from the atmosphere. The slag must be removed after each layer.

Manual Metal Arc welding is still a widelyused hardfacing process. Due to the low cost of the equipment, the low operating costs of the process and the ease of transporting the equipment, this flexible process is ideally suited to repair work.



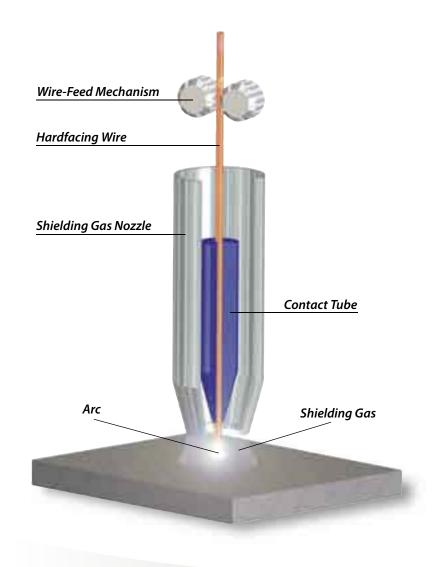
| Alloy               |       |         |      |     | Nomir | nal Analy | ses  |      |   |       | Hardness |
|---------------------|-------|---------|------|-----|-------|-----------|------|------|---|-------|----------|
|                     | Cr    | С       | Мо   | Si  | W     | Ni        | Со   | Fe   | В | Other | HRC      |
| Cobalt Base         |       |         |      |     |       |           |      |      |   |       |          |
| Stellite® alloy 1   | 30.0  | 2.5     | -    | -   | 12.0  | -         | Bal. | -    | - | -     | 51-58    |
| Stellite® alloy 6   | 28.0  | 1.1     | -    | -   | 4.0   | -         | Bal. | -    | - | -     | 39-43    |
| Stellite® alloy 12  | 29-31 | 1.4-1.8 | -    | -   | 8.0   | -         | Bal. | -    | - | -     | 47-51    |
| Stellite® alloy 20  | 33.0  | 2.45    | -    | 1.0 | 17.5  | <2.5      | Bal. | <2.5 | - | -     | 53-56    |
| Stellite® alloy 21  | 27.0  | 0.25    | 6.0  | -   | -     | 2.0       | Bal. | -    | - | -     | 28-40*   |
| Stellite® alloy 25  | 20.0  | 0.1     | -    | -   | 15.0  | 10.0      | Bal. | <3.0 | - | -     | 20-45*   |
| Stellite® alloy 250 | 28.0  | 0.1     | -    | -   | -     | -         | Bal. | 20.0 | - | -     | 19-29    |
| Nickel Base         |       |         |      |     |       |           |      |      |   |       |          |
| Nistelle® alloy C   | 17.0  | 0.1     | 17.0 | -   | 5.0   | Bal.      | -    | 6.0  | - | -     | 17-27*   |

<sup>\*</sup>depending upon the degree of cold-working

Electrodes are available in these standard diameters: **3.2mm | 4.0mm | 5.0mm | 6.4mm** Other diameters are available on request.

### Gas Metal Arc (MIG/MAG) Welding, Submerged-arc Welding






# Gas Metal Arc Welding (MIG/MAG), Submerged Arc Welding

In these arc welding processes, consumable hardfacing wire is fed continuously from a spool through the welding torch into the arc, where it is melted and transferred to the workpiece.

In the case of MIG/MAG welding, the weld-pool is protected from the atmosphere with a stream of shielding gas. These MIG/MAG processes are very flexible, i.e. they can be partially or fully mechanised and they are suitable for a wide range of applications.

Wire is also used as the hardfacing consumable in the submerged-arc welding process. In this process a mineral-based fluxing powder flows around the consumable wire and is melted by the arc. It forms a gaseous shield around the arc and also forms a slag on top of the weld-pool, thereby shielding the cooling weld-pool from the atmosphere.

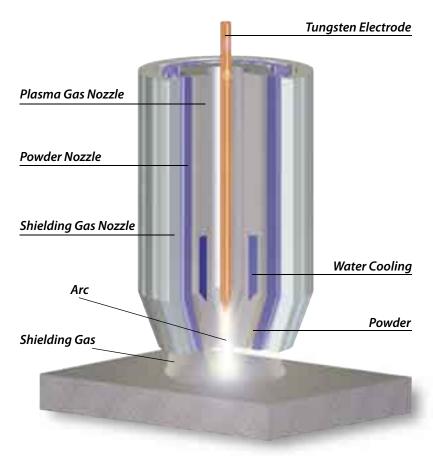


| Alloy                |      |      |     |     | Nomina | ıl Analyse | <u> </u> |      |     |        | Hardness |
|----------------------|------|------|-----|-----|--------|------------|----------|------|-----|--------|----------|
|                      | Cr   | С    | Мо  | Si  | W      | Ni         | Со       | Fe   | Mn  | Other  | HRC      |
| Cobalt Base          |      |      |     |     |        |            |          |      |     |        |          |
| Stellite® alloy 1    | 29.0 | 2.5  | -   | 1.0 | 12.0   | -          | Bal.     | 3.5  | 1.0 | -      | 51-58    |
| Stellite® alloy 6    | 28.0 | 1.2  | -   | 1.0 | 4.5    | <3.0       | Bal.     | 5.0  | 1.5 | -      | 39-43    |
| Stellite® alloy 6 LC | 28.0 | 0.9  | -   | 1.0 | 5.0    | -          | Bal.     | 5.0  | 1.5 | -      | 34-36    |
| Stellite® alloy 12   | 30.0 | 1.9  | -   | 1.0 | 8.5    | -          | Bal.     | 5.0  | 1.5 | -      | 47-51    |
| Stellite® alloy 21   | 27.0 | 0.2  | 5.0 | -   | 3.0    | 3.0        | Bal.     | 5.0  | -   | -      | 28-40*   |
| Stellite® alloy 306  | 24.0 | 0.5  | -   | 1.0 | 3.0    | 5.0        | Bal.     | <7.0 | -   | Nb 5.0 | 37-41    |
| Ultimet®             | 26.0 | 0.06 | 5.0 | 0.3 | 2.0    | 9.0        | Bal.     | 3.0  | -   | -      | 28-45*   |

<sup>\*</sup>depending upon the degree of cold-working

Wire is available in these standard diameters: **1.2mm | 1.6mm | 2.4mm | 3.2mm** Other diameters are available on request.

### PTA Welding


Highly Automated
High Powder Utilisation
Low Dilution
Very Wide Range of Hardfacing Materials

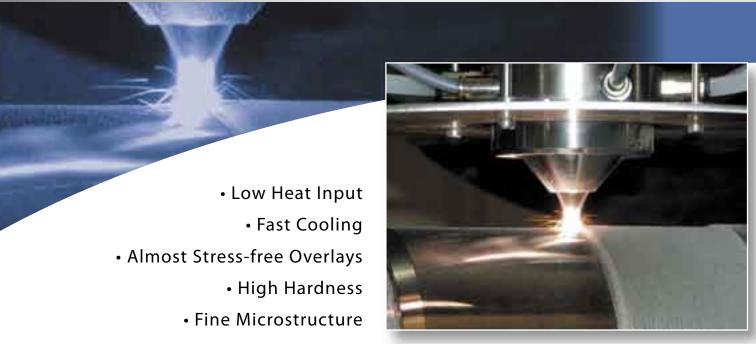


### **PTA Welding**

The Plasma-Transferred-Arc process recommends itself due to its ease of automation and thus a high degree of reproducibility of the welded overlays. In addition, because of the highly concentrated heat source, this process benefits from high powder utilisation and can achieve a very low level of iron dilution in the overlay.

Because the hardfacing materials are in powder form, it is possible to produce overlays from many different materials and combinations of materials with a wide range of hardness and other properties. For this reason Deloro Stellite offers the widest range of hardfacing materials for this process.



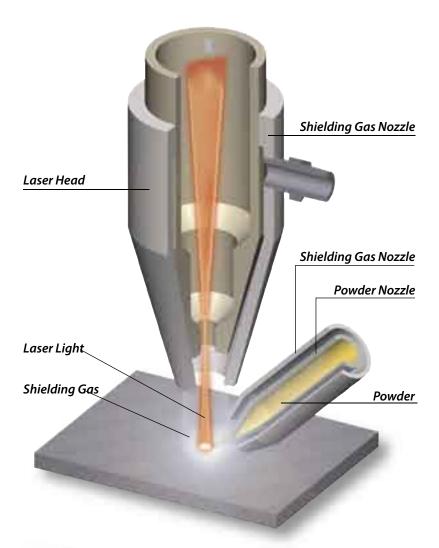

| Alloy                  |      |         |      |      | Nominal | Analyses | s    |      |     |                         | Hardness         |
|------------------------|------|---------|------|------|---------|----------|------|------|-----|-------------------------|------------------|
|                        | Cr   | С       | Мо   | Si   | W       | Ni       | Со   | Fe   | В   | Other                   | HRC              |
| Cobalt Base            |      |         |      |      |         |          |      |      |     |                         |                  |
| Stellite® alloy 1      | 30.0 | 2.5     | -    | 1.0  | 12.0    | <3.0     | Bal. | <3.0 | -   | -                       | 51-58            |
| Stellite® alloy 6      | 28.0 | 1.2     | -    | 1.1  | 4.5     | <3.0     | Bal. | <3.0 | -   | -                       | 39-43            |
| Stellite® alloy 12     | 30.0 | 1.4-1.9 | -    | 1.5  | 8.5     | <3.0     | Bal. | <3.0 | -   | -                       | 47-51            |
| Stellite® alloy 20     | 33.0 | 2.5     | -    | -    | 17.0    | <3.0     | Bal. | <3.0 | -   | -                       | 53-56            |
| Stellite® alloy 21     | 27.0 | 0.25    | 5.5  | 1.6  | -       | 2.5      | Bal. | <3.0 | -   | -                       | 28-40*           |
| Stellite® alloy 22     | 28.0 | 0.3     | 12.0 | -    | -       | 1.5      | Bal. | -    | -   | -                       | 41-49            |
| Stellite® alloy 25     | 20.0 | 0.1     | -    | -    | 15.0    | 10.0     | Bal. | 2.0  | -   | Mn 1.5                  | 20-45*           |
| Stellite® alloy 694    | 28.0 | 0.85    | -    | -    | 19.5    | 5.0      | Bal. | <3.0 | -   | -                       | 48-51            |
| Stellite® alloy 706    | 29.0 | 1.2     | 5.0  | <2.0 | -       | <3.0     | Bal. | <3.0 | -   | -                       | 39-43            |
| Stellite® alloy 712    | 29.0 | 2.0     | 8.5  | <2.0 | -       | <3.0     | Bal. | <3.0 | -   | -                       | 46-51            |
| Stellite® alloy F      | 25.0 | 1.7     | -    | 1.1  | 12.0    | 22.0     | Bal. | <3.0 | -   | -                       | 40-45            |
| Tribaloy® alloy T-400  | 8.5  | -       | 29.5 | 2.6  | -       | -        | Bal. | -    | -   | -                       | 46-53            |
| Tribaloy® alloy T-400C | 14.0 | -       | 27.0 | 2.4  | -       | -        | Bal. | -    | -   | -                       | 47-52            |
| Tribaloy® alloy T-401  | 17.0 | 0.2     | 22.0 | 1.3  | -       | -        | Bal. | -    | -   | -                       | 45-50            |
| Tribaloy® alloy T-800  | 17.5 | -       | 28.0 | 3.4  | -       | -        | Bal. | -    | -   | -                       | 54-60            |
| Ultimet®               | 26.0 | -       | 5.0  | -    | 2.0     | 9.0      | Bal. | 3.0  | -   | -                       | 28-45*           |
| Nickel Base            |      |         |      |      |         |          |      |      |     |                         |                  |
| Deloro® alloy 15       | -    | 0.03    | -    | 2.0  | -       | Bal.     | -    | -    | 1.1 | Cu 20.0                 | 180-230 (HV)     |
| Deloro® alloy 22       | -    | 0.03    | -    | 2.4  | -       | Bal.     | -    | -    | 1.4 | -                       | 20-22            |
| Deloro® alloy 25       | -    | 0.05    | -    | 2.7  | -       | Bal.     | -    | -    | 1.8 | -                       | 25-28            |
| Deloro® alloy 30       | 7.0  | 0.15    | -    | 3.4  | -       | Bal.     | -    | 3.0  | 1.2 | -                       | 27-30            |
| Deloro® alloy 36       | 7.0  | 0.3     | -    | 3.7  | -       | Bal.     | -    | 3.0  | 1.2 | -                       | 33-38            |
| Deloro® alloy 38       | -    | 0.05    | -    | 3.0  | -       | Bal.     | -    | -    | 2.1 | -                       | 35-39            |
| Deloro® alloy 40       | 7.5  | 0.25    | -    | 3.5  | -       | Bal.     | -    | 2.5  | 1.7 | -                       | 38-42            |
| Deloro® alloy 45       | 9.0  | 0.35    | -    | 3.7  | -       | Bal.     | -    | 2.5  | 1.9 | -                       | 44-47            |
| Deloro® alloy 50       | 11.0 | 0.45    | -    | 4.0  | -       | Bal.     | -    | 3.0  | 2.3 | -                       | 48-52            |
| Deloro® alloy 56       | 17.0 | 0.6     | 2.5  | 4.5  | -       | Bal.     | -    | 3.0  | 3.6 | Cu 2.5                  | 54-58            |
| Deloro® alloy 60       | 15.0 | 0.7-0.9 | -    | 4.3  | -       | Bal.     | -    | 3.5  | 3.1 | -                       | 58-62            |
| Deloro® alloy 90       | 5.5  | 0.25    | -    | 3.0  | -       | Bal.     | -    | 2.4  | 1.0 | Al 1.0                  | 30-33            |
| Tribaloy® alloy T-700  | 15.5 | -       | 32.5 | 3.4  | -       | Bal.     | -    | -    | -   | -                       | 42-48            |
| Nistelle® alloy C      | 16.5 | -       | 17.0 | -    | 4.5     | Bal.     | <2.5 | 5.5  | -   | -                       | 17-27*           |
| Nistelle® alloy C4     | 16.0 | -       | 16.0 | -    | -       | Bal.     | <2.0 | <2.0 | -   | -                       | n.a.             |
| Nistelle® alloy C276   | 15.5 | -       | 16.0 | -    | 3.8     | Bal.     | <2.5 | 5.0  | -   | -                       | n.a.             |
| Nistelle® alloy 625    | 21.5 | -       | 9.0  | -    | -       | Bal.     | -    | <5.0 | -   | Nb 3.6                  | 25 (40 hardened) |
| Nistelle® alloy 718    | 19.0 | 0.6     | 3.0  | -    | -       | Bal.     | -    | 18.0 | -   | Nb 1.0<br>Al 0.5 Ti 1.0 | 270-470 (HV)     |

<sup>\*</sup>depending upon the degree of cold-working

PTA powder is available in these standard particle-size ranges: **HD: -250\mum +45\mum** | **W: -150\mum +63\mum** | **G: -125\mum +45\mum** Other particle-size ranges and Iron Based Alloys are available on request.

Depending upon the process parameters, the hardness of the welded deposit can vary from the values provided in the above table.

### Laser Overlaying




(Picture: coaxial powder-feed)

### **Laser Overlaying**

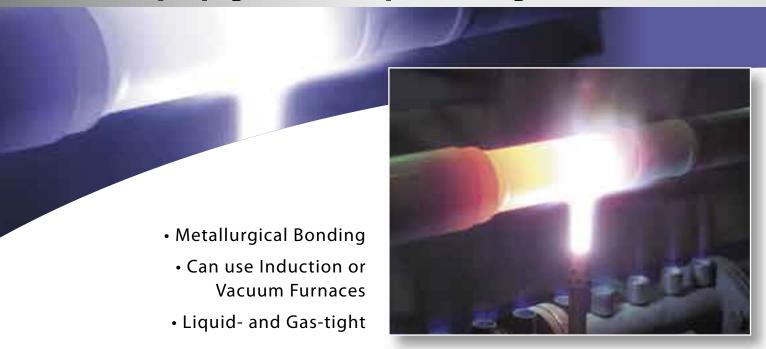
When overlaying with a laser an optical arrangement is used to focus the laser beam on the workpiece and heat it. Simultaneously hard-facing material in the form of powder or wire is introduced into the laser beam and melted. Due to the narrow heat-affected zone and the fast cooling rate the heat input is low, thereby producing an almost stress-free overlay.

Compared with other welding processes with higher heat inputs, for a given hardfacing alloy the fast cooling rate of the laser process produces an overlay with a significantly higher hardness and a finer microstructure.



(Picture: non-coaxial powder feed)

| Alloy                  |      |         |      | Nor | ninal Anal | yses |      |      |     | Hardness |  |  |
|------------------------|------|---------|------|-----|------------|------|------|------|-----|----------|--|--|
|                        | Cr   | С       | Мо   | Si  | W          | Ni   | Со   | Fe   | В   | HRC      |  |  |
|                        |      |         |      | PO  | WDER       |      |      |      |     |          |  |  |
| Cobalt Base            |      |         |      |     |            |      |      |      |     |          |  |  |
| Stellite® alloy 6      | 28.0 | 1.2     | -    | 1.1 | 4.5        | <3.0 | Bal. | <3.0 | -   | 40-44    |  |  |
| Stellite® alloy 12     | 30.0 | 1.4-1.9 | -    | 1.5 | 8.5        | <3.0 | Bal. | <3.0 | -   | 48-52    |  |  |
| Stellite® alloy 21     | 27.0 | 0.25    | 5.5  | 1.6 | -          | 2.5  | Bal. | <3.0 | -   | 28-40*   |  |  |
| Stellite® alloy 22     | 28.0 | 0.3     | 12.0 | -   | -          | 1.5  | Bal. | -    | -   | 41-49    |  |  |
| Stellite® alloy 31     | 25.5 | 0.5     | -    | -   | 7.5        | 10.5 | Bal. | -    | -   | 30-35    |  |  |
| Tribaloy® alloy T-400  | 8.5  | -       | 28.5 | 2.6 | -          | -    | Bal. | -    | -   | 46-53    |  |  |
| Tribaloy® alloy T-400C | 14.0 | -       | 27.0 | 2.4 | -          | -    | Bal. | -    | -   | 47-52    |  |  |
| Tribaloy® alloy T-401  | 17.0 | 0.2     | 22.0 | 1.3 | -          | -    | Bal. | -    | -   | 45-50    |  |  |
| Tribaloy® alloy T-800  | 17.5 | -       | 28.0 | 3.4 | -          | -    | Bal. | -    | -   | 54-60    |  |  |
| Ultimet®               | 26.0 | -       | 5.0  | -   | 2.0        | 9.0  | Bal. | 3.0  | -   | 28-45*   |  |  |
| Nickel Base            |      |         |      |     |            |      |      |      |     |          |  |  |
| Deloro® alloy 40       | 7.5  | 0.25    | -    | 3.5 | -          | Bal. | -    | 2.5  | 1.7 | 38-42    |  |  |
| Deloro® alloy 50       | 11.0 | 0.45    | -    | 4.0 | -          | Bal. | -    | 3.0  | 2.3 | 48-52    |  |  |
| Deloro® alloy 60       | 15.0 | 0.7-0.9 | -    | 4.3 | -          | Bal. | -    | 3.5  | 3.1 | 58-62    |  |  |


| Alloy                 |      |         |      | Non | ninal Anal | yses |      |      |   | Hardness |
|-----------------------|------|---------|------|-----|------------|------|------|------|---|----------|
|                       | Cr   | С       | Мо   | Si  | W          | Ni   | Со   | Fe   | В | HRC      |
|                       |      |         |      |     | WIRE       |      |      |      |   |          |
| Cobalt Base           |      |         |      |     |            |      |      |      |   |          |
| Stellite® alloy 6     | 28.0 | 1.2     | -    | 1.1 | 4.5        | <3.0 | Rest | <3.0 | - | 39-43    |
| Stellite® alloy 12    | 30.0 | 1.4-1.9 | -    | 1.5 | 8.5        | <3.0 | Rest | <3.0 | - | 47-51    |
| Stellite® alloy 31    | 25.5 | 0.5     | -    | -   | 7.5        | 10.5 | Rest | -    | - | 30-35    |
| Stellite® alloy 694   | 28.0 | 0.85    | -    | -   | 19.5       | 5.0  | Rest | <3.0 | - | 48-52    |
| Tribaloy® alloy T-800 | 17.5 | -       | 28.0 | 3.4 | -          | -    | Rest | -    | - | 54-60    |

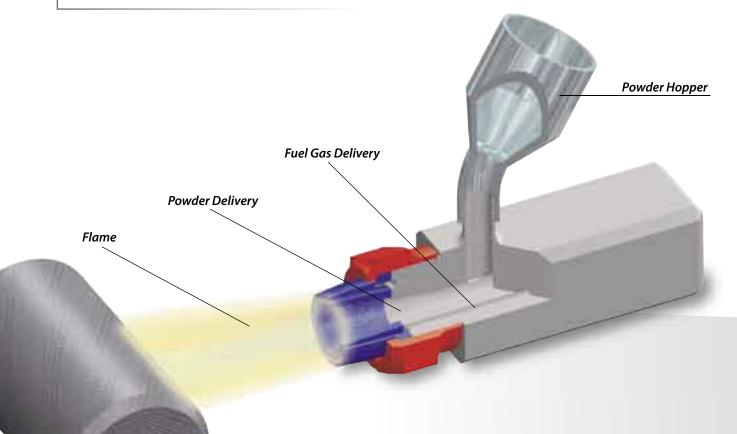
<sup>\*</sup>depending upon the degree of cold-working

All particle-size ranges of powder are available on request.

Wire is available in the standard diameter of **0.8mm**. Other diameters are available on request. Depending upon the process parameters, the hardness of the welded deposit can vary from the values provided in the above table.

### Flame-spraying with subsequent Fusing




## Flame-spraying with subsequent Fusing

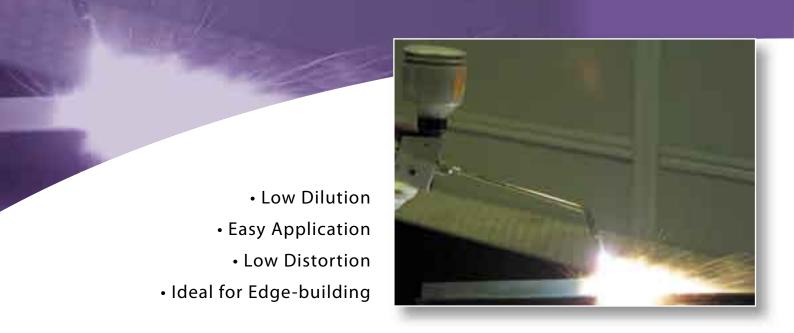
In flame spraying with powder the particles are softened or melted in an oxyacetylene flame and transferred to a prepared workpiece by the expanding gases. An additional gas stream can be used to assist with powder particle transfer.

The second stage of the process, fusing the sprayed coating to the workpiece, is usually done with an oxyacetylene burner. Alternatively, for series production,

fusing can be carried out by induction heating or in a vacuum furnace.

The bonding of the sprayed coating to the workpiece is significantly increased by the fusing process, which creates metallurgical bonds between the powder particles and also between the coating and the workpiece. The coating becomes liquid- and gas-tight.



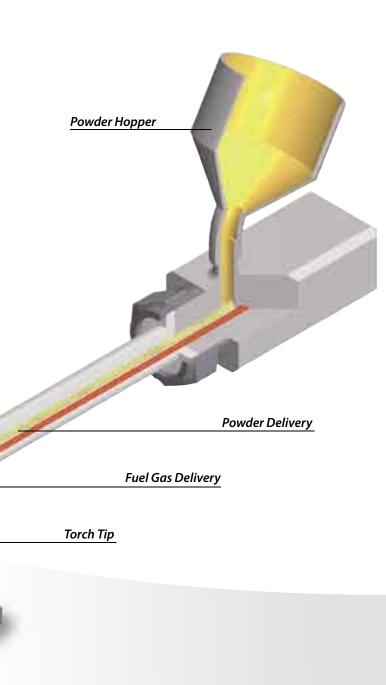

| _ |   |  |
|---|---|--|
|   | _ |  |
|   | n |  |
|   | _ |  |

| Alloy                 |      |         |     |     | Nomina | ıl Analyse | <u></u> |      |     |         | Hardness     |
|-----------------------|------|---------|-----|-----|--------|------------|---------|------|-----|---------|--------------|
|                       | Cr   | С       | Мо  | Si  | W      | Ni         | Со      | Fe   | В   | Other   | HRC          |
| Cobalt Base           |      |         |     |     |        |            |         |      |     |         |              |
| Stellite® alloy 157   | 22.0 | 0.1     | -   | 1.6 | 4.5    | 1.5        | Bal.    | -    | 2.4 | -       | 50-54        |
| Stellite® alloy 158   | 26.0 | 0.75    | -   | 1.2 | 5.5    | -          | Bal.    | -    | 0.7 | -       | 40-45        |
| Stellite® alloy 159   | 18.5 | 0.1     | 5.5 | 3.3 | -      | 27.0       | Bal.    | 2.0  | 3.2 | -       | 52-56        |
| Stellite® alloy SF 1  | 19.0 | 1.3     | -   | 3.0 | 13.0   | 13.0       | Bal.    | <4.0 | 2.2 | -       | 54-58        |
| Stellite® alloy SF 6  | 19.0 | 0.7     | -   | 2.5 | 7.5    | 13.0       | Bal.    | <4.0 | 1.7 | -       | 43-46        |
| Stellite® alloy SF 12 | 19.0 | 1.0     | -   | 2.8 | 9.0    | 13.0       | Bal.    | <4.0 | 1.8 | -       | 46-50        |
| Stellite® alloy SF 20 | 19.0 | 1.5     | -   | 2.8 | 15.0   | 13.0       | Bal.    | <4.0 | 3.0 | -       | 58-62        |
| Nickel Base           |      |         |     |     |        |            |         |      |     |         |              |
| Deloro® alloy 15      | -    | 0.03    | -   | 2.0 | -      | Bal.       | -       | -    | 1.1 | Cu 20.0 | 180-220 (HV) |
| Deloro® alloy 22      | -    | 0.03    | -   | 2.4 | -      | Bal.       | -       | -    | 1.4 | -       | 20-22        |
| Deloro® alloy 36      | 7.0  | 0.3     | -   | 3.7 | -      | Bal.       | -       | 3.0  | 1.2 | -       | 33-38        |
| Deloro® alloy 40      | 7.5  | 0.25    | -   | 3.5 | -      | Bal.       | -       | 2.5  | 1.7 | -       | 38-42        |
| Deloro® alloy 45      | 9.0  | 0.35    | -   | 3.7 | -      | Bal.       | -       | 2.5  | 1.9 | -       | 44-47        |
| Deloro® alloy 50      | 11.0 | 0.45    | -   | 4.0 | -      | Bal.       | -       | 3.0  | 2.3 | -       | 48-52        |
| Deloro® alloy 56      | 17.0 | 0.6     | 2.5 | 4.5 | -      | Bal.       | -       | 3.0  | 3.6 | Cu 2.5  | 54-58        |
| Deloro® alloy 60      | 15.0 | 0.7-0.9 | -   | 4.3 | -      | Bal.       | -       | 3.5  | 3.1 | -       | 58-62        |
| Deloro® alloy 62      | 14.0 | 0.7     | -   | 3.6 | 9.5    | Bal.       | -       | 3.5  | 3.2 | -       | 62-64        |

Powder is available in these standard particle-size ranges: S:  $-106\mu m + 38\mu m$  M:  $-125\mu m + 45\mu m$ 

Other particle-size ranges are available on request.

### Powder Welding




### **Powder Welding**

A specially-designed oxyacetylene torch is used for powder welding. The workpiece is heated with the torch, powder is introduced into the gas stream from the integral powder hopper and then transferred to the workpiece through the flame.

This process is similar to the oxyacetylene process with the exception that the hardfacing takes place at lower temperatures, which minimises oxidation and distortion of the workpiece and enables easy surfacing of edges.

Flame



| Alloy               |      |         |     |     | Nomina | al Analyse | <u></u> |     |     |         | Hardness     |
|---------------------|------|---------|-----|-----|--------|------------|---------|-----|-----|---------|--------------|
|                     | Cr   | С       | Мо  | Si  | W      | Ni         | Со      | Fe  | В   | Other   | HRC          |
| Cobalt Base         |      |         |     |     |        |            |         |     |     |         |              |
| Stellite® alloy 157 | 22.0 | 0.1     | -   | 1.6 | 4.5    | 1.5        | Bal.    | -   | 2.4 | -       | 50-54        |
| Stellite® alloy 159 | 18.5 | 0.1     | 5.5 | 3.3 | -      | 27.0       | Bal.    | 2.0 | 3.2 | -       | 52-56        |
| Nickel Base         |      |         |     |     |        |            |         |     |     |         |              |
| Deloro® alloy 15    | -    | 0.03    | -   | 2.0 | -      | Bal.       | -       | -   | 1.1 | Cu 20.0 | 180-220 (HV) |
| Deloro® alloy 21    | 3.0  | 0.03    | -   | 2.0 | -      | Bal.       | -       | -   | 0.7 | P 2.0   | 26-45*       |
| Deloro® alloy 22    | -    | 0.03    | -   | 2.4 | -      | Bal.       | -       | -   | 1.4 | -       | 20-22        |
| Deloro® alloy 23    | -    | 0.04    | -   | 2.5 | -      | Bal.       | -       | -   | 1.6 | -       | 25-27        |
| Deloro® alloy 25    | -    | 0.05    | -   | 2.7 | -      | Bal.       | -       | -   | 1.8 | -       | 25-28        |
| Deloro® alloy 29    | 3.0  | 0.03    | -   | 2.2 | -      | Bal.       | -       | -   | 1.0 | P 2.2   | 27-30        |
| Deloro® alloy 30    | 7.0  | 0.15    | -   | 3.4 | -      | Bal.       | -       | 3.0 | 1.2 | -       | 27-30        |
| Deloro® alloy 33    | 4.5  | 0.15    | 2.5 | 2.8 | -      | Bal.       | -       | -   | 1.3 | P 2.0   | 36-40        |
| Deloro® alloy 35    | 4.7  | 0.17    | -   | 3.1 | -      | Bal.       | -       | 2.0 | 1.6 | -       | 33-37        |
| Deloro® alloy 36    | 7.0  | 0.32    | -   | 3.7 | -      | Bal.       | -       | 3.0 | 1.2 | -       | 33-38        |
| Deloro® alloy 38    | -    | 0.05    | -   | 3.0 | -      | Bal.       | -       | -   | 2.1 | -       | 35-39        |
| Deloro® alloy 40    | 7.5  | 0.25    | -   | 3.5 | -      | Bal.       | -       | 2.5 | 1.7 | -       | 38-42        |
| Deloro® alloy 50    | 11.0 | 0.45    | -   | 4.0 | -      | Bal.       | -       | 3.0 | 2.3 | -       | 48-52        |
| Deloro® alloy 56    | 17.0 | 0.6     | 2.5 | 4.5 | -      | Bal.       | -       | 3.0 | 3.6 | Cu 2.5  | 54-58        |
| Deloro® alloy 60    | 15.0 | 0.7-0.9 | -   | 4.3 | -      | Bal.       | -       | 3.5 | 3.1 | -       | 58-62        |

<sup>\*</sup>depending upon the degree of cold-working

Powder is available in these standard particle-size ranges: **K: -75μm +20μm** 

KX: -106μm +20μm KS: -53μm +20μm

### Plasma Spraying




### **Plasma Spraying**

In the Plasma Spraying process powder is softened or melted in the plasma gas stream, which also transfers the particles to the workpiece.

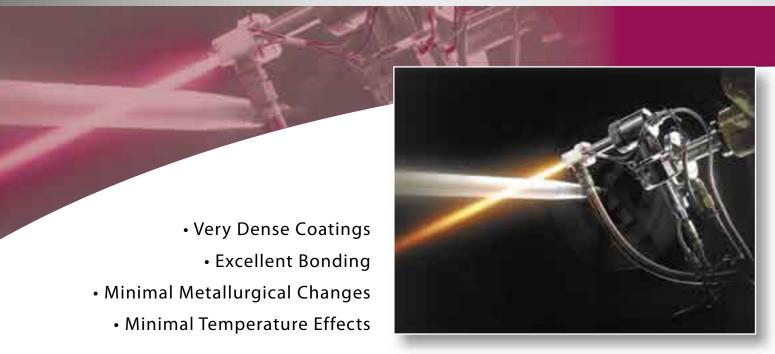
The plasma arc is not transferred to the workpiece, it is contained within the plasma torch between an axial electrode and a water-cooled nozzle. The process is operated in normal atmosphere, in a shielding gas stream (e.g. Argon), in a vacuum or under water.

Due to the high temperature of the plasma gas stream the Plasma Spray process is especially suitable for spraying high melting-point metals as well as their oxides and carbides.

**Flame** 



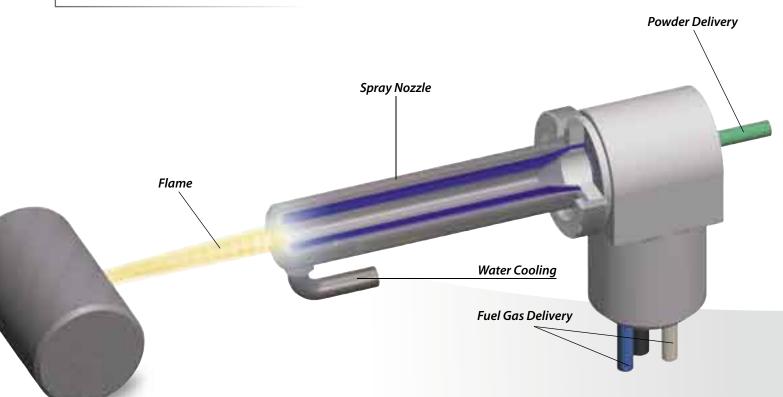
| Alloy                 |      | Nominal Analyses |      |     |      |      |      |     |      |                                |               |  |
|-----------------------|------|------------------|------|-----|------|------|------|-----|------|--------------------------------|---------------|--|
|                       | Cr   | С                | Мо   | Si  | W    | Ni   | Со   | В   | WC   | Cr <sub>3</sub> C <sub>2</sub> | HRC           |  |
| Cobalt Base           |      |                  |      |     |      |      |      |     |      |                                |               |  |
| Stellite® alloy 1     | 30.0 | 2.5              | -    | 1.0 | 12.0 | <3.0 | Bal. | -   | -    | -                              | 51-58         |  |
| Stellite® alloy 6     | 28.0 | 1.2              | -    | 1.1 | 4.5  | <3.0 | Bal. | -   | -    | -                              | 39-43         |  |
| Stellite® alloy 12    | 30.0 | 1.4-1.9          | -    | 1.5 | 8.5  | <3.0 | Bal. | -   | -    | -                              | 47-51         |  |
| Stellite® alloy 21    | 27.0 | 0.25             | 5.5  | 1.6 | -    | 2.5  | Bal. | -   | -    | -                              | 28-40*        |  |
| Stellite® alloy 31    | 25.5 | 0.5              | -    | -   | 7.5  | 10.5 | Bal. | -   | -    | -                              | 30-35         |  |
| Stellite® alloy 694   | 28.0 | 0.85             | -    | -   | 19.5 | 5.0  | Bal. | -   | -    | -                              | 48-51         |  |
| Stellite® alloy SF 1  | 19.0 | 1.3              | -    | 3.0 | 13.0 | 13.0 | Bal. | 2.2 | -    | -                              | 54-58         |  |
| Stellite® alloy SF 6  | 19.0 | 0.7              | -    | 2.5 | 7.5  | 13.0 | Bal. | 1.7 | -    | -                              | 43-46         |  |
| Stellite® alloy SF 12 | 19.0 | 1.0              | -    | 2.8 | 9.0  | 13.0 | Bal. | 1.8 | -    | -                              | 46-50         |  |
| Stellite® alloy SF 20 | 19.0 | 1.5              | -    | 2.8 | 15.0 | 13.0 | Bal. | 3.0 | -    | -                              | 58-62         |  |
| Tribaloy® alloy T-400 | 8.5  | -                | 29.5 | 2.6 | -    | -    | Bal. | -   | -    | -                              | 46-53         |  |
| Tribaloy® alloy T-800 | 17.5 | -                | 28.0 | 3.4 | -    | -    | Bal. | -   | -    | -                              | 54-60         |  |
| Nickel Base           |      |                  |      |     |      |      |      |     |      |                                |               |  |
| Deloro® alloy 40      | 7.5  | 0.25             | -    | 3.5 | -    | Bal. | -    | 1.7 | -    | -                              | 38-42         |  |
| Deloro® alloy 50      | 11.0 | 0.45             | -    | 4.0 | -    | Bal. | -    | 2.3 | -    | -                              | 48-52         |  |
| Deloro® alloy 60      | 15.0 | 0.7-0.9          | -    | 4.3 | -    | Bal. | -    | 3.1 | -    | -                              | 58-62         |  |
| Nistelle® C           | 16.5 | -                | 17.0 | -   | 4.5  | Bal. | <2.5 | -   | -    | -                              | 17-27*        |  |
| Tribaloy® alloy T-700 | 15.5 | -                | 32.5 | 3.4 | -    | Bal. | -    | -   | -    | -                              | 42-48         |  |
| Jet Kote Powder       |      |                  |      |     |      |      |      |     |      |                                |               |  |
| JK® 7109              | 4.0  | -                | -    | -   | -    | -    | 10.0 | -   | 86.0 | -                              | 1000 (HV 0.3) |  |
| JK® 7112              | -    | -                | -    | -   | -    | -    | 12.0 | -   | 88.0 | -                              | 1100 (HV 0.3) |  |
| JK® 7117              | -    | -                | -    | -   | -    | -    | 17.0 | -   | 83.0 | -                              | 1000 (HV 0.3) |  |
| JK® 7175              | -    | -                | -    | -   | -    | 5.0  | -    | -   | 60.0 | 35.0                           | 1100 (HV 0.3) |  |
| JK® 7184              | 5.0  | -                | -    | -   | -    | 20.0 | -    | -   | -    | 75.0                           | 800 (HV 0.3)  |  |
| JK® 7310              | 20.0 | -                | -    | -   | -    | 80.0 | -    | -   | -    | -                              | 280 (HV 0.3)  |  |


<sup>\*</sup>depending upon the degree of cold-working

Powder is available in these standard particle-size ranges: **JK: -53μm +20μm** 

PSF: -45μm PSC: -106μm

Other particle-size ranges are available on request.


## High Velocity Flame Spraying (HVOF)



## High Velocity Flame Spraying (HVOF)

In the High Velocity Flame Spraying process, powder is introduced axially into a chamber in which a gas flame is constantly burning under high pressure. The exhaust gas exits through an expansion nozzle which produces a high velocity gas stream. The powder particles are heated in this gas stream and transferred by it with high kinetic energy to the surface of the workpiece, forming a dense coating with excellent bonding properties.

Due to the moderate transfer of heat to the powder particles and to the workpiece, which remains relatively cool, there is little metallurgical change to the sprayed material and the workpiece.



| Alloy                |         |         |       |     | No   | minal A | nalyses |      |     |      |                                            | Hardness     |
|----------------------|---------|---------|-------|-----|------|---------|---------|------|-----|------|--------------------------------------------|--------------|
|                      | Cr      | С       | Мо    | Si  | W    | Ni      | Со      | Fe   | В   | WC   | Other                                      | HV 0.3       |
| Carbide-co           | ntainin | g Powde | r     |     |      |         |         |      |     |      |                                            |              |
| JK® 7108             | 4.0     | -       | -     | -   | -    | -       | 10.0    | -    | -   | Bal. | -                                          | 900-1100     |
| JK® 7109             | 4.0     | -       | -     | -   | -    | -       | 10.0    | -    | -   | Bal. | -                                          | 900-1100     |
| JK® 7110             | 4.0     | -       | -     | -   | -    | -       | 10.0    | -    | -   | Bal. | -                                          | 900-1100     |
| JK® 7112             | -       | -       | -     | -   | -    | -       | 12.0    | -    | -   | Bal. | -                                          | 1000-1200    |
| JK® 7114             | -       | -       | -     | -   | -    | -       | 12.0    | -    | -   | Bal. | -                                          | 1000-1150    |
| JK® 7117             | -       | -       | -     | -   | -    | -       | 17.0    | -    | -   | Bal. | -                                          | 900-1100     |
| JK® 7132             | -       | -       | -     | -   | -    | 12.0    | -       | -    | -   | Bal. | -                                          | 950-1150     |
| JK <sup>®</sup> 7175 | -       | -       | -     | -   | -    | 5.0     | -       | -    | -   | 25.0 | 70.0<br>(W.Cr) <sub>x</sub> C <sub>y</sub> | 1000-1200    |
| JK® 7184             | 5.0     | -       | -     | -   | -    | 20.0    | -       | -    | -   | -    | 75.0 Cr <sub>3</sub> C <sub>2</sub>        | 700-900      |
| <b>Cobalt Bas</b>    | e       |         |       |     |      |         |         |      |     |      |                                            |              |
| JK® 7201             | 30.0    | 2.5     | -     | -   | 12.0 | -       | Bal.    | -    | -   | -    | -                                          | 550-650      |
| JK® 7206             | 28.0    | 1.1     | -     | 1.1 | 4.5  | -       | Bal.    | -    | -   | -    | -                                          | 350-470      |
| JK® 7212             | 29.5    | 1.4-1.7 | -     | -   | 8.0  | -       | Bal.    | -    | -   | -    | -                                          | 450-550      |
| JK® 7221             | 28.0    | 0.25    | 5.5   | 2.0 | -    | 2.5     | Bal.    | -    | -   | -    | -                                          | 250-350      |
| JK® 7540             | 8.5     | -       | 29.0  | 2.6 | -    | -       | Bal.    | -    | -   | -    | -                                          | 500-600      |
| JK® 7580             | 18.0    | -       | 28.0  | 3.4 | -    | -       | Bal.    | -    | -   | -    | -                                          | 700-750      |
| Nickel Base          | e       |         |       |     |      |         |         |      |     |      |                                            |              |
| JK® 7301             | -       | -       | -     | -   | -    | Bal.    | -       | -    | -   | -    | Al 5.0                                     | n.a.         |
| JK® 7310             | 20.0    | -       | -     | -   | -    | Bal.    | -       | -    | -   | -    | -                                          | 250-300      |
| JK® 7313             | 10.0    | 0.25    | -     | -   | -    | Bal.    | -       | 5.0  | -   | -    | -                                          | 250-350 (нв) |
| JK® 7341             | 19.0    | 0.6     | 3.0   | -   | -    | Bal.    | -       | 18.0 | -   | -    | Nb 5.0<br>Al 0.5 Ti 1.0                    | 270-470      |
| JK® 7342             | 21.5    | -       | 9.0   | -   | -    | Bal.    | -       | <5.0 | -   | -    | Nb+Ta 3.7                                  | 250-350      |
| JK® 7380             | -       | -       | >99.5 | -   | -    | -       | -       | -    | -   | -    | <0.5                                       | 700-900      |
| JK® 7391             | 16.5    | <0.12   | 17.0  | -   | 4.5  | Bal.    | -       | 5.5  | -   | -    | -                                          | 200-300      |
| JK® 7392             | 16.0    | <0.08   | 16.5  | -   | -    | Bal.    | -       | -    | -   | -    | -                                          | n.a.         |
| JK® 7393             | 15.5    | <0.08   | 16.0  | -   | 3.8  | Bal.    | -       | 5.0  | -   | -    | -                                          | n.a.         |
| JK® 7394             | 21.0    | <0.08   | 13.5  | -   | 3.0  | Bal.    | -       | 4.0  | -   | -    | -                                          | n.a.         |
| JK® 7395             | -       | -       | 28.5  | -   | -    | Bal.    | -       | 5.0  | -   | -    | -                                          | n.a.         |
| JK® 7570             | 15.5    | <0.08   | 32.5  | 3.4 | -    | Bal.    | -       | -    | -   | -    | -                                          | 400-450      |
| JK® 7640             | 7.5     | 0.25    | -     | 3.5 | -    | Bal.    | -       | -    | 1.7 | -    | -                                          | 350-450      |
| JK® 7650             | 11.0    | 0.45    | -     | 4.0 | -    | Bal.    | -       | 2.9  | 2.3 | -    | -                                          | 500-550      |
| JK® 7660             | 15.0    | 0.7     | -     | 4.4 | -    | Bal.    | -       | 4.0  | 3.1 | -    | -                                          | 600-700      |
| Iron Base            |         |         |       |     |      |         |         |      |     |      |                                            |              |
| JK® 7330             | 17.0    | 0.03    | 2.5   | 1.0 | -    | 13.0    | -       | Bal. | -   | -    | -                                          | 250-350      |

Powder is available in the standard particle-size range of **-53\mum +20\mum**.

Other particle-size ranges are available on request.

Carbide-containing powders are available in either the agglomerated/sintered form or the agglomerated/sintered/densified form. Depending upon the process parameters, the hardness of the welded deposit can vary from the values provided in the above table.



Deloro Stellite GmbH Zur Bergpflege 51-53 56070 Koblenz

Tel.: 0049-(0)261-8088-0 Fax.: 0049-(0)261-8088-23

info@stellite.de sales@stellite.de Deloro Stellite Koblenz: www.stellite.de Deloro Stellite Group: www.stellite.com